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Riesz, Björn och födelsedagen...

Björn, Grattis p̊a födelsedagen!

Tack Vladimir!

Jag tänkte svara p̊a det föreg̊aende mejlet, ”I am retired since ten years (today!)”, men jag avstod fr̊an det inom parentesen.

Vi pratade lite om Riesz förra veckan p̊a SU. Någon fr̊agade vem som var Frostmans handledare, och jag svarade M. Riesz. Och

vi diskuterade saker om Åke Pleijel, pappa till Agneta Pleijel (författare, med bl.a. den intressanta boken ”Sniglar och snö”).

Om jag minns rätt s̊a efterträddes M. Riesz av Åke Pleijel i Lund, och Åke gifte om sig med en av Riesz döttrar. Osv osv.

Bästa hälsningar,

Björn

2024/10/30

V.T. comment: ”Berget p̊a månens baksida”, Swedish drama film about the life of the Russian mathematician Sofia

Kovalevskaya, written by Agneta Pleijel
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In calculus (including) PDEs, there are two principal ingredients: the Cauchy-
Bunyakovsky-Schwarz inequality and integration by parts, with infinitely many
variations.

(Mathematical folklore)
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Some relevant contexts

Several natural contexts including the following:

Moment and L-problem of moments (A.A. Markov, M. Krein, N. Akhiezer, M.
Putinar)

Exponential transform of quadrature domains and domain identification (M.
Putinar, B. Gustafsson, G. Golub, P. Milanfar, V.T.)

Exponential transform and regularity of free boundaries in two dimensions by M.
Putinar, B. Gustafsson, Ann. SNS Pisa, 1998

Riesz potentials and regularity theory (by D. Adams, L. Hedberg, G. Mingione)

Moving-centre monotonicity formulas (Jonathan Zhu, J. Funct. Anal., 2018)

Recently in ”Moving monotonicity formulae for minimal submanifolds in constant
curvature”, by K. Naff, J.J. Zhu, link

Moment indeterminateness: the Marcel Riesz variational principle, by David P.
Kimsey, Mihai Putinar, arXiv:2307.16018 (2023) is a nice source for history,
motivations and ideas
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Two classical inequalities

The Cauchy-Bunyakovsky-Schwarz inequality: under some natural assumptions,(∫
R
f(x)g(x) dx

)2

≤
∫
R
f(x)2 dx ·

∫
R
g(x)2 dx

Proof follows from

0 ≤
∫
R
(f(x)− t · g(x))2 dx =

∫
R
f2(x) dx− 2t

∫
R
f(x)g(x) dx+ t2

∫
R
g2(x) dx

and the fact that the discriminant is non-positive.

The Markov inequality: for any positive continuous random variable ξ

a · Pr(ξ > a) ≤ E(ξ)

Proof.

a ·
∫
[a,∞)

fξ(x) dx ≤
∫
R
xfξ(x) dx
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A couple of weird sharp inequalities

Theorem 1

For any measurable function 0 ≤ ρ(x) ≤ 1, x ∈ R, with compact support ̸∋ 0 there holds

sinh2

(
1

2

∫
R

ρ(x)

|x| dx
)

≤ 1

4

∫
R
ρ(x)dx

∫
R

ρ(x)

x2
dx, (1)

1

2

(∫
R
ρ(x)dx

)2

≤ tanh

(
1

2

∫
R

ρ(x)

|x| dx
)
·
∫
R
|x|ρ(x)dx. (2)

The inequalities are sharp and attained iff ρ(x) is a characteristic function of an interval
[a, b] with ab > 0.

Remark. For ρ = χ[a,b] the above inequalities become equalities:

sinh2(
1

2
ln
b

a
) =

 √
b√
a
−

√
a√
b

2

2

=
1

4
(b− a) · b− a

ab
,

1

2
(b− a)2 = tanh(

1

2
ln
b

a
) · b

2 − a2

2
=

b
a
− 1

b
a
+ 1

· b
2 − a2

2
.
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Why the above inequalities are strange? They are ‘transcendental’.

Indeed, looking ahead, I can tell you that if one consider the moments of positive
degrees, then the corresponding (Markov type) inequalities are algebraic (in fact,
polynomial). For example(∫

R+

ρ(x) dx

)4

≤ 12

[(∫
R+

ρ(x) dx

)(∫
R+

x2ρ(x) dx

)
−
(∫

R
xρ(x) dx

)2
]
,

The inequality is sharp and again, attains for the characteristic function of an interval:

(b− a)4 ≤ 12

[
(b− a) · b

3 − a3

3
− (b2 − a2)2

4

]
= 12 · (b− a)2

3 · 4
[
4(a2 + ab+ b2)− 3(a2 + 2ab+ b2)

]
= (b− a)4
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Riesz potentials for bounded measures

Let ρ : Rn → [0, 1] be an meausarable (nonnegative bounded) function with compact
support. Let us consider the Riesz potential of index α

(Iαρ)(x) =

∫
Rn

ρ(y)

|y − x|n−α
dωy =

1

ωn

∫
Rn

ρ(y)

|y − x|n−α
dy, x ̸∈ supp(ρ)

where the integrals are normalized by

dωy :=
1

ωn
dy =

1

ωn
dy1 · . . . · dyn,

ωn being the n-dimensional Lebesgue measure of the unit ball in Rn. Then

− 1

n− α
(∇Iαρ)(x) =

∫
Rn

(y − x)ρ(y)

|y − x|n+2−α
dωy.

If ex ∈ Rn is the normalized (−∇Iαρ)(x) then

1

n− α
|(∇Iαρ)(x)| =

∫
Rn

⟨y − x; ex⟩ · ρ(y)
|y − x|n+2−α

dωy =

∫
Rn

⟨z; ex⟩ · ρ(z+ x)

|z|n+2−α
dωz

=

∫
Rn

z1
|z|n−(α−2)

· ρ̃(z) dωz, supp ρ̃ ⊂ Rn \ {0}
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So, I will be interested in certain sharp point-wise estimates involving

1

n− α
|(∇Iαρ)(x)| =

∫
Rn

z1
|z|n−(α−2)

· ρ̃(z) dωz,

(Iαρ)(x) =

∫
Rn

ρ̃(z)

|z|n−α
dωz

(Iα−2ρ)(x) =

∫
Rn

ρ̃(z)

|z|n−α+2
dωz

In other words, if you have a ‘moment-like’ inequality for the L.H.S., it implies the
inequality for the gradient ∇Iα.
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Gradient estimates

Notice that a simple estimate implies

1

n− α
|(∇Iαρ)(x)| =

∣∣∣∣∫
Rn

z1
|z|n+2−α

· ρ̃(z) dωz
∣∣∣∣ ≤ ∫

Rn

1

|z|n−(α−1)
· ρ̃(z) dωz = Iα−1ρ̃

(3)
and, similarly, the Cauchy inequality with z1 ≤ 1 · |z| implies that

1

n− α
|∇Iαρ| ≤

√
Iαρ̃ · Iα−2ρ̃. (4)

But these inequalities are far from being optimal. Indeed, the above estimate (1) gives:

sinh2

(
1

2

∫
R+

ρ(x)

x
dx

)
≤ 1

4

∫
R+

ρ(x)dx

∫
R+

ρ(x)

x2
dx,

which can be rewritten for n = α = 1 (notice that ω1 = µ1([−1, 1]) = 2) as∫
R+

xρ(x)

x2
dxω ≤ sinh−1

(√∫
R+

ρ(x)

x0
dxω

∫
R+

ρ(x)

x2
dxω

)
= sinh−1

√
I1ρ · I−1ρ.
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Similarly, interpreting

1

2

(∫
R
ρ(x)dx

)2

≤ tanh

(
1

2

∫
R

ρ(x)

|x| dx
)
·
∫
R
|x|ρ(x)dx.

for n = 1 and α = 2, we obtain(∫
R+

xρ(x)

x1
dxω

)2

≤ tanh

(∫
R+

ρ(x)

x1
dxω

)
·
∫
R+

ρ(x)

x−1
dxω,

implying an exact estimate

|∇I2ρ|2 ≤ tanh I0ρ · I2ρ

This suggests a different shape of the corresponding inequality, we discuss this below.
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Gradient estimates for general dimensions

Given a measurable function 0 ≤ ρ(x) ≤ 1, x ∈ Rn, and 0 ̸∈ supp ρ, find a sharp
inequality which involves

u := Iαρ, v := Iα−2ρ, and w :=
1

n− α
|∇Iαρ|.

In other words, we want to determine

Nα(u, v) := sup
ρ

{
w2 : Iαρ = u, Iα−2ρ = v

}
.

In this notation,
1

n− α
|∇Iαρ| ≤

√
Nα

(
Iαρ, Iα−2ρ

)
.

A pair (u, v) ⊂ R2
≥0 is said to be admissible if ∃ρ: 0 ≤ ρ ≤ 1:t Iαρ = u and Iα−2ρ = v.

Some natural questions arise:

How does the shape of the goal function Nα(u, v) depend on u and v?

Does Nα(u, v) separate into functions of u and v for a general α?

When it is symmetric in u and v?
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V. Tkachev, Sharp pointwise gradient estimates for Riesz potentials with a bounded
density, Anal. Math. Physics, 8(2018)

Theorem 2

Let n ≥ 1 and α ∈ (0, 2]. Then the set of admissible pairs coincides with the
nonnegative quadrant R2

≥0 and

Nα(u, v) = u2(α−1)/α h2
α(t)

f
2(α−1)/α
α (t)

, ∀u, v > 0 (5)

where t = t(u, v) is uniquely determined by the relation

f2−α
α (t)fα

α−2(t) = u2−αvα, (6)

where

fα(t) = t2−n(t2 − 1)n/2F ( 2−α
2
, 2+α

2
; n+2

2
, 1− t2)

hα(t) = t1−n(t2 − 1)n/2F ( 2−α
2
, α
2
; n+2

2
, 1− t2),

and F ([a, b], [c], t) is the Gauss hypergeometric function.
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The shape structure of the goal function Nα(u, v) is still hidden, but one has

Nα(u, v) = u2(α−1)/αΦn,α(u
2−αvα).

Two particular cases are interesting for applications and can be simplified to

for α = 2: N2(u, v) = u · ϕn(v),

for α = 1: N1(u, v) = ψn(u · v).

The case α = 2 was the starting point for the above results. Let Mn(t) be the solution

of M′
n(t) = 1−M2/n

n (t), M(0) = 0. For example, M1(t) = tanh t, M2(t) = 1− e−t.

Theorem 3 (α = 1, V.T., 2005)

For any density function 0 ≤ ρ(x) ≤ 1, 0 ̸∈ supp ρ(∫
Rn

x1ρ(x)

|x|n dωx

)2

≤ Mn

(∫
Rn

ρ(x)

|x|n dωx

)∫
Rn

ρ(x)

|x|n−2
dωx. (7)

The inequality is sharp and the equality holds when ρ(x) is the characteristic function of
ball B with a center on the x1-axes and 0 ̸∈ B.

w

(4): N2(u, v) < uv

(3): N2(u, v) < u

(7) : N2(u, v) = u · Mn(v)
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Theorem 4 (α = 2, V.T., 2018)

For any measurable function 0 ≤ ρ(x) ≤ 1, 0 ̸∈ supp ρ, the sharp inequality holds∣∣∣∣∫
Rn

x1ρ(x)

|x|n+1
dωx

∣∣∣∣ ≤ Φn

(√∫
Rn

ρ(x)

|x|n−1
dωx ·

∫
Rn

ρ(x)

|x|n+1
dωx

)
, (8)

where Φn(s) is the unique solution of the initial problem

Φ′′
n =

Φ′
n(Φ

′2
n − 1)

(n− 1)ΦnΦ′
n + s

, Φn(0) = 0, Φ′
n(0) = 1 (9)

subject to the asymptotic condition

lim
s→∞

Φn(s)

ln s
=

Γ(n+2
2

)

Γ(n+1
2

)Γ( 3
2
)
. (10)
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The case α = 1 and n = 2
The case n = 2 is even very special among α = 2. Both Φ2(s)
and its inverse satisfy the same ODE

Φ′′
2 =

Φ′
2(Φ

′2
2 − 1)

Φ2Φ′
2 + s

, Φ2(0) = 0, Φ′
2(0) = 1

Furthermore, the function Φ2 has some extra symmetries and a
nice parameterizations by virtue of complete elliptic integrals:

[s(k),Φ(k)] = [
4

π
(E(k)−K(k)),

4

π
(k ·K(k)− 1

k
· E(k))],

K(k) =

∫ 1

0

dt√
1− t2

√
1− (1− k2)t2

, E(k) =

∫ 1

0

√
1− (1− k2)t2√

1− t2
dt

The following remarkable properties: the Taylor expansion at the origin of Φ2(z) is

and Φ(z) satisfies the following involutive property:

(−Φ2) ◦ (−Φ2) = id.

We don’t yet know any conceptional explanation of these facts.
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The classical L-problem of moments

A truncated moment problem with bounds appears in A. A. Markov (1896) research on probability theory.

Krein and Akhieser (in 1930’s) considered the following problem: given a measurable function 0 ≤ ρ(x) ≤ L

on R define its moments

ℓn :=

∫
R
x
n
ρ(x) dx.

How much it could be said about ρ if only finitely many moments are known? Which ρ are finitely

determined?. . . The truncated moment problem can be formulated in Rn.

Some applications/motivations

Probability (reconstruction of probability density functions)

Physics (determination of contours)

Subnormal operator theory

Computer Science (image recognition and reconstruction)

Geography (location of proposed distribution centers)

Environmental Science (oil spills, via quadrature domains)

Engineering (tomography)

Optimization (finding the global minimum of a real polynomial in several real variables)

Function Theory (a dilation-type structure theorem in Fejér-Riesz factorization theory)

Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at different angles, collecting the information

on a screen. One then seeks to obtain a constructive, optimal way to approximate the body, or in some cases

to reconstruct the body.
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The classical L-problem of moments

The exponential transform of ρ(x) is the formal series identity:

exp

(
−

1

L

∞∑
n=1

ℓn−1t
−n

)
= exp

(
−

1

L

∫
R

ρ(ζ)dζ

t − ζ

)
= 1 +

σ0

t
+

σ1

t2
+ . . . := E(ρ(x), t)

Example. If ρ(x) = χ[a,b](x) then ℓn−1 = bn−an

n , n ≥ 1, therefore

∞∑
n=1

ℓn−1t
−n

= ln
t − a

t − b

E(χ[a,b](x), t) =
t − b

t − a
= 1 +

b − a

t

∞∑
n=0

bn

tn

In general, for union of several intervals, E(χD(x), t) =
∏ t−bi

t−ai
is a rational

function, in particular, the Hankel determinant sequence

∆i := det(σi+j)0≤i,j≤N

vanishes after some integer N . For example, for one interval,

∆1 = S, ∆2 =

∣∣∣∣ S Sb

Sb Sb2

∣∣∣∣ = 0, etc., S := b − a

Andrei Andreyevich Markov (1856-1922)

Naum Il’ich Akhiezer (1901-1980)

Mark Grigorievich Krein (1907-1989)

Adolf Abramovich Nudelman (1931-2011)
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Theorem (Krein, Akhieser, Nudelman)

The L-problem has a solution if and only if the sequence (σn) is nonnegative definite on R (i.e.

(σi+j)0≤i,j≤N is nonnegative definite).

A class of extremal solutions of the L-problem (in the natural convex set of solutions) corresponds to

degenerated non-negative definite sequences (σn), i.e. ∃N : det(σi+j)0≤i,j≤N = 0.

Any extremal solution is (proportional to) the characteristic function of a union of at most N disjoint

bounded intervals: ρ = L · χ∪∆i
.

If L = 1 and I = [0,∞), the solvability of the corersponding L-moment problem is equivalent to that of the

Stieltjes problem for {σk}k≥0, which is equivalent to the nonnegativity of the Hankel criterium

∆m := det(σi+j)
m
i,j=0 ≥ 0, ∆

′
m := det(σi+j+1)

m
i,j=0 ≥ 0, m ≥ 0.

Example. For the exponential transform this readily yields (Markov’s inequalities for L-moments)

ℓ
4
0 ≤ 12(ℓ0ℓ2 − ℓ

2
1), etc (higher terms inequalities) (11)

Comparing the above example when ρ = χ[a,b](x) and ℓn−1 = (bn − an)/n, this becomes

(b − a)
4 ≤ 12((b − a) ·

b3 − a3

3
−

(b2 − a2)2

4
). . . = (b − a)

4
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The general exponential transform in Rn

The exponential transform can be viewed as a potential depending on a domain in Rn, or
more generally on a measure having a density function ρ(x) (with compact support) in
the range 0 ≤ ρ ≤ 1. More precisely,

Eρ(x) = exp

[
− 2

nωn

∫
ρ(ζ)dζ

|x− ζ|n

]
,

If ρ(x) = χD(x) (the most interesting and, in a sense, an extremal case) then

ED(x) = exp

[
− 2

nωn

∫
D

dζ

|x− ζ|n

]
.
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The 2D exponential transform and quadrature domains

The 2D-version has appeared in the 1970s in operator theory, as a principal function of
certain close to normal operators and has been intensively studied by many researchers

J.D. Pincus, Commutators and systems of singular integral equations, Acta Math., 121 (1968).

J.W. Helton, R.E. Howe, Traces of commutators of integral operators, Acta Math., 135 (3–4) (1975)

More precisely, for any measurable function

ρ : C → [0, 1]

of compact support there exists a unique irreducible, linear bounded operator T acting on
a Hilbert space H, with rank-one self-commutator [T ∗, T ] = ξ ⊗ ξ, which factors Eρ as

Eρ(z, w) = exp

[
− 1

π

∫
ρ(ζ) dA(ζ)

(ζ − z)(ζ̄ − w̄)

]
= 1− ⟨(T ∗ − w̄)−1ξ, (T ∗ − z̄)−1ξ⟩ (12)

The 2D-exponential transform has also recently been proved to be useful within operator
theory, moment problems and other problems of domain identification, and for
proving regularity of free boundaries (Gustafsson, Putinar, Milanfar, Shahgholian,. . . ).
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The 2D exponential transform and quadrature domains

If one would infer from the 1D-picture a good class of extremal domains for Markov’s L-problem in 2D, one

would choose the disjoint unions of disks, as immediate analogs of disjoint unions of intervals. In reality, the

nature of the complex plane is more complicated.

Example 1: the unit disk Ω = D(0, 1):

ED = 1 − 1
zw̄ .

Example 2: Ω = D(−1, 1) ∪ D(1, 1):

EΩ = (1 − 1
(z+1)(w̄+1)

)(1 − 1
(z−1)(w̄−1)

).

Example 3: Ω = D(−1, r) ⊕ D(1, r), r > 1 (a quadrature domain, see below):

EΩ = 1 − 1+A(r)zw̄

(w̄2−1)(z2−1)
.
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The 2D exponential transform and quadrature domains

D. Aharonov, H. S. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Anal.

Math., 30 (1976)

B. Gustafsson, Quadrature identities and the Schottky double, Acta Appl. Math.1 (1983)

M. Putinar, Linear analysis of quadrature domains, Ark. Mat. 33 (1995).

Ω := a quadrature domain (for analytic functions) if∫∫
Ω

h dxdy =
n∑

i=1

cih(zi) ∀h ∈ L1(Ω), for fixed zi ∈ Ω, ci ∈ C.

The exponential transform of a bounded closed set Ω is defined by

EΩ(z, w) = exp

− 1

π

∫∫
Ω

dζ ∧ dζ̄
(ζ − z)(ζ̄ − w̄)

 = 1−
∞∑

m,n=0

σm,n

zm+1w̄n+1
.

It connects the exponential and the complex moments ℓm,n =
∫∫

Ω
ζmζ̄ndA(z).

∞∑
m,n=0

σm,n

zm+1w̄n+1
= 1− exp(−

∞∑
m,n=0

ℓm,nz
m+1w̄n+1),
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The 2D exponential transform and quadrature domains

Theorem. (Aharonov-Shapiro 1976; Gustafsson 1983, Putinar 1996)
The following conditions are equivalent:

EΩ(z, w) is rational = Q(z,w)

P (z)P (w)
, |z|, |w| ≫ 1;

Ω is a quadrature domain;

Ω is determined by finitely many moments ℓjk ⇔ det(σjk)
N
0 = 0 for some N ;

There is a bounded linear operator T acting on a Hilbert space, with spectrum equal to Ω, with rank

one self commutator [T∗, T ] = ⟨ξ ⊗ ξ⟩ and such that the linear span (T∗kξ)k≥0 is finite dimensional.

Theorem (B. Gustafsson, 1983)
A domain Ω is a quadrature domain if and only if its Schwarz function is meromorphic on the Schottky double

of Ω. A boundary is always algebraic.

Theorem (M. Putinar, 1996)
There is a bounded linear operator T acting on a Hilbert space, with spectrum equal to Ω, with rank one self

commutator [T∗, T ] = ξ ⊗ ξ and such that the linear span (T∗kξ)k≥0 is finite dimensional. In particular,

EΩ(z, w) is rational.
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Given meromorphic functions f , g on a compact Riemann surface M , their meromorphic resultant is

RM (f, g) = R(f, g) =
g(f−1(0))

g(f−1(∞))
=

m∏
i=1

g(ai)

g(σi)

where (f) =
∑

ai −
∑

σi is the principal divisor of f . By Weil’s reciprocity law, R(f, g) = R(g, f).

Then the exponential transform of a quadrature domain Ω is the meromorphic resultant on the Schottky

double Ω̂:

EΩ(z, w) = RΩ̂(f − z, g − w̄).

B. Gustafsson, V.Tkachev, The Resultant on Compact Riemann Surfaces, Comm. Math. Phys., 2009
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Some very recent application

Arctic curves of periodic dimer models and generalized discriminants by Mateusz Piorkowski,

arXiv:2410.17138, Submitted on 22 Oct 2024

Abstract: We compute the algebraic equation for arctic curves of

the Aztec diamond with a doubly (quasi-)periodic weight struc-

ture and obtain similar results for certain models of the hexagon

[. . . ] The key to our result is the construction of a discriminant

for meromorphic differentials on a higher genus Riemann surface.

This construction works analogously for meromorphic sections of

arbitrary holomorphic line bundles. . .

Dear Björn, dear Vladimir,

I have recently uploaded a paper on the arxiv which might be of

interest to you. It deals mainly with the construction of discrimi-

nants on Riemann surfaces, but I also discuss resultants in Section

6. The main motivation to study these objects comes from statis-

tical physics, more precisely dimer (tiling) models and the arctic

curves phenomenon. [. . . ] There might be some connection to

your paper ”The resultant on compact Riemann surfaces” though

the actual definition and construction that I use differs substain-

tially. Nonetheless, I thought you might be interested. [. . . ]

Best/Mateusz,

2024/10/28
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Gustafsson, B. and Putinar, M., The exponential transform: a renormalized Riesz
potential at critical exponent, Indiana Univ. Math. J. 52 (2003)

Gustafsson and Putinar considered the n-dimensional version

Eρ(x) = exp

[
− 2

n

∫
Rn

ρ(ζ)dωζ

|x− ζ|n

]
= exp(− 2

n
I0(x)), dωζ :=

1

ωn
dζ.

and proved that although the Riesz potential produces a logarithmic singularity at x
when this variable tends from outside to a smooth portion of the boundary ∂ supp ρ, the
exponential restores the smoothness in x, even up to real analyticity.

In the same paper, they proved that for n = 2, ln(1−EΩ(x)) is a subharmonic function
for all x ̸∈ Ω. The proof makes use some integral representations and Ahlfors-Beurling
capacity estimates. They also deduce an asymptotic decomposition for Ω ⊂ Rn:

1− EΩ(x) =
2|Ω|

|Sn−1| · |x|n +O(
1

|x|n+1
)

and conjectured that a much stronger statement should holds:
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Conjecture. In the above notation,{
ln(1− Eρ), if n = 2,

1
n−2

(1− Eρ)
(n−2)/n, if n ≥ 3,

is subharmonic outside supp ρ for any density ρ ̸≡ 0.

The above conjecture essentially claims that the function

Φ(n−2)/n
n (I0ρ(x)) := (1− exp(− 2

n
I0ρ(x)))

(n−2)/n

is subharmonic for n ≥ 3, where

Φn(t) = 1− e−2t/n.

A refinement of (1− Eρ)
(n−2)/n is an arbitrary function F (I0ρ)

(n−2)/n satisfying
0 ≤ F (t) < 1 for any t ≥ 0. Then
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The subharmonicity

V. Tkachev, Subharmonicity of higher dimensional exponential transforms, Operator Theory: Advances

and App., (156)2005.

∆F (I0)
n−2
n =

n − 2

n
(F

′
(I0)F (I0)

− 2
n ∆I0 + (F

′
(I0)F (I0)

− 2
n )

′|∇I0|2)

. . . (now choose F such that F ′
= 1 − F

2/n). . .

=
n − 2

n2
(1 − F (I0)

2
n )

(
nF (I0)

− 2
n ∆I0 − 2F (I0)

− 2+n
n |∇I0|2

)
= 2(n − 2)(1 − F (I0)

2
n )

[
F (I0)B − |A|2

]
,

(13)

where

A =

∫
(x − ζ)ρ(ζ)

|x − ζ|n+2
dζω,

B =

∫
ρ(ζ)

|x − ζ|n+2
dζω,

I0 =

∫
ρ(ζ)

|x − ζ|n
dζω.

Therefore the sign of the Laplacian ∆F (x) coincides with the sign of F (I0)B − |A|2.
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The subharmonicity

Theorem (V.T., 2005) If 0 ≤ ρ(x) ≤ 1 with compact support, 0 ̸∈ supp ρ, x ∈ Rn,

M′
n(t) = 1−M2/n

n then
Mn(I0)B − |A|2 ≥ 0.

One of the key elements in the proof was the following relation

Mn

(∫
B(R)

dωζ

|x− ζ|n

)
=

Rn

|x|n , (14)

in other words, Mn transfers the α = 0 index Riesz potential of any ball to its kernel
(up to a normalization).
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Remark 1. The subharmonicity of 1
n−2

(1−Eρ)
(n−2)/n is weaker than that of Mn(Eρ), and it readily follows from

Mn(w) ≤
e2w/n − 1

e2w/n − n−2
n

.

Remark 2. Using the inversion x → x/|x|2, the desired inequality follows from a particular one:

(∫
x1ρ(x)

|x|n
dωx

)2

≤ Mn

(∫
ρ(x)

|x|n
dωx

)∫
ρ(x)

|x|n−2
dωx (15)

Remark 3. Using an elementary inequality

(a − b)2

c + d
≤ max

[
a2

c
,
b2

d

]
, a, b, c, d > 0,

it suffices to verify that (15) oven holds when 0 ≤ ρ(x) ≤ 1 with compact support in the half-space: supp ρ ⊂ Rn
+.

Proposition. Let 0 ≤ ρ(x) ≤ 1 have a compact support supp ρ ⊂ Rn
+ and M′

n(t) = 1 − M2/n
n . Then

N2(u, v) := sup

{(∫
x1ρ(x)

|x|n
dxω

)2

: ρ ∈ K(u, v)

}
= uMn(v)

where

K(u, v) := {ρ : 0 ≤ ρ(x) ≤ 1, supp ρ ⊂ Rn
+,

∫
ρ(x)

|x|n−2
dxω = u,

∫
ρ(x)

|x|n
dxω = v}
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Riesz potentials for a ball: a trick with co-area formula
Let us consider a ball

B(τ, σ) = {y ∈ Rn
: |y − τe1|

2 ≤ τ
2 − σ

2}

= {y ∈ Rn
: |y|2 − 2τy1 + σ

2 ≤ 0}

= {y ∈ Rn
:
σ

τ
≤ λ(y) ≤ 1}

where the function λ(y) =
|y|2+σ2

2τy1
foliates B(τ, σ) into spheres

y1

ȳ = (y2, . . . , yn)

σ τ

radius
√

τ2 − σ2

∂B(τz, σ) : {y ∈ Rn
: |y|2 − 2τzy1 + σ

2
= 0} = {y ∈ Rn

: |y − τze1|
2

= τ
2
z
2 − σ

2}

with moving centres at (τz, 0) for σ
τ

≤ z < 1. By the co-area formula

I :=

∫
B(τ,σ)

dωy

|y|n
=

1

ωn

∫ 1

σ/τ
dz

∫
∂B(τz,σ)

dS

|y|n|∇λ(y)|
, (16)

where

|∇λ|2 =
|ȳ|2

τ2y2
1

+
(y2

1 − σ2 − |ȳ|2)2

4τ2y4
1

⇒ |∇λ|∂B(τz,σ) =

√
τ2z2 − σ2

τ
·

1

y1
.

Substitution into (16) yields by the harmonicity of y1|y|−n and the mean value property

I =

1∫
σ/τ

τdz√
τ2z2 − σ2

∫
∂B(τz,σ)

y1

ωn|y|n
dS =

1∫
σ/τ

τdz√
τ2z2 − σ2

( τz

(τz)n
·
nωn(

√
τ2z2 − σ2)n−1

ωn

)

(substitution τz = σ cosh t) = n

∫ ξ

0
tanh

n−1
tdt =: Tn(ξ), where cosh ξ = τ/σ.
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An equivalent way to rewrite the latter result is

Mn

(∫
B(R)

dωζ

|x − ζ|n

)
=

(
R

|x|

)n

, (17)

in other words, Mn transfers the Riesz potential of index 0 to its kernel (up to a normalization).

Note that if g(t) = (tanh t)n then T ′
n(t) = n(tanh t)n−1, g′(t) = n(tanh t)n−1(1 − tanh2 t), hence

dg
dTn

= 1 − g2/n, which readily implies

g(t) = (tanh t)
n

= Mn(Tn(t)). (18)

In summary, using cosh ξ = τ/σ and τ2 − σ2 = σ2 sinh2 ξ, we obtain using the Mean Value Property:

∫
B(τ,σ)

1

|x|n
dxω = Tn(ξ) = v, (19)

∫
B(τ,σ)

1

|x|n−2
dxω = (MVP) = σ

2 sinhn ξ

coshn−2 ξ
= τ

2
(tanh ξ)

n
= τ

2Mn(Tn(ξ)) = τ
2Mn(v) = u, (20)

∫
B(τ,σ)

x1

|x|n
dxω = (MVP) = σ

sinhn ξ

coshn−1 ξ
= . . . = τMn(Tn(ξ)) = τMn(v) =

√
uMn(v). (21)

Note that the right hand side in (19) etc is increasing in ξ for any fixed σ, hence it takes any positive real value. By the above,

ρ̃(x) := χB(τ,σ)(x) ∈ K(u, v), therefore

N2(u, v) ≥ uMn(v).
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‘Bathtub principle’
Let f be µ-measurable, µ({x : f(x) = t}) = 0 and µ({x : f(x) < t}) be finite for

all real t. A solution of the minimization problem

inf{
∫

fρ dµ : ρ ∈ Ω(A)},

where Ω(A) := {ρ : 0 ≤ ρ ≤ 1,
∫
ρ dµ = A} is given by the characteristic function

of a sublevel set ρ0 = χ{f<s} where s = sup{t : µ({x : f(x) < t}) ≤ A}.

f
s-level set

{f < s}D

Remark 1. An equivalent statement: in the above assumption,∫
{t:f(t)<a}

dµ =

∫
ρ(x) dµ implies

∫
{t:f(t)<a}

f(x) dµ ≤
∫

f(x)ρ(x) dµ.

Remark 2. Compare this with Markov-Chebyshev inequality a · Pr(ξ > a) ≤ E(ξ)

Remark 3. When µ({x : f(x)>t}) is finite for all real t, the corresponding statement holds for sup.

Proof. Note that

f · (χ{f<a} − ρ) =

{
f · (0 − ρ), if f > a,

f · (1 − ρ), if f < a.
≤
{

a · (0 − ρ), if f > a,

a · (1 − ρ), if f < a.
= a · (χ{f<a} − ρ),

therefore ∫
f · (χ{f<a} − ρ) dµ ≤

∫
a · (χ{f<a} − ρ) = 0
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Proof cont.: Conversely, given two arbitrary positive u, v, let τ, σ be chosen as in (19)–(21), and let ρ̃(x) := χB(τ,σ)(x).

Consider a = |x|2−n, b = |x|−n, c = x1|x|−n. Define a measure on Rn by

dµ = (a + σ
2
b) dxω = (|x|2 + σ

2
)
dxω

|x|n

Then for any test function ρ ∈ K(u, v)∫
ρ̃ dµ =

∫
ρ dµ =

∫
B(τ,σ)

dµ =

∫
(|x|2−n

+ σ
2|x|−n

) dxω = u + σ
2
v (22)

This means that ρ and ρ̃ are also test functions for the extremal problem

sup
ρ

{
∫

fρ dµ :

∫
ρ dµ = u + σ

2
v},

where f(x) = c
a+σ2b

=
x1

|x|2+σ2 = 1
2τλ(x)

. Then (a magic point!):

{f(x) > 1
2τ

} = {λ(x) < 1} = B(τ, σ),

µ({f(x) > 1
2τ

}) = µ(B(τ, σ)) = (by (22)) = u + σ2v

By the Bathtub Principle, ρ̃ is an extremal density, hence∫
fρ dµ ≤

∫
fρ̃ dµ =

∫
B(τ,σ)

f dµ =

∫
B(τ,σ)

x1|x|
−n

dµ = (by (21)) =
√

uMn(v)

therefore N2(u, v) ≤ uMn(v).
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THANK YOU FOR YOUR ATTENTION!
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