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Riesz, Bjorn och fodelsedagen...

Bjorn, Grattis pd fodelsedagen!

Tack Vladimir!
Jag tankte svara pa det féregdende mejlet, "l am retired since ten years (today!)”, men jag avstod fran det inom parentesen.

Vi pratade lite om Riesz férra veckan pa SU. Nagon fragade vem som var Frostmans handledare, och jag svarade M. Riesz. Och
vi diskuterade saker om Ake Pleijel, pappa till Agneta Pleijel (forfattare, med bl.a. den intressanta boken " Sniglar och snd”).
Om jag minns ritt s3 eftertriddes M. Riesz av Ake Pleijel i Lund, och Ake gifte om sig med en av Riesz déttrar. Osv osv.
Basta halsningar,

Bjorn

2024/10/30

V.T. comment: "Berget pd ménens baksida”, Swedish drama film about the life of the Russian mathematician Sofia
Kovalevskaya, written by Agneta Pleijel
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@ Motivations and examples

(@ Outline of the main results

@ The L-problem of moments and the exponential transform

@ Digression: The 2D exponential transform and quadrature domains

@ The conjecture of Gustaffson-Putinar and sharp estimates of Riesz potentitals

@ Appendix: The proof
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In calculus (including) PDEs, there are two principal ingredients: the Cauchy-
Bunyakovsky-Schwarz inequality and integration by parts, with infinitely many
variations.

(Mathematical folklore)
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Some relevant contexts

Several natural contexts including the following:

Qo

Moment and L-problem of moments (A.A. Markov, M. Krein, N. Akhiezer, M.
Putinar)

Exponential transform of quadrature domains and domain identification (M.
Putinar, B. Gustafsson, G. Golub, P. Milanfar, V.T.)

Exponential transform and regularity of free boundaries in two dimensions by M.
Putinar, B. Gustafsson, Ann. SNS Pisa, 1998

Riesz potentials and regularity theory (by D. Adams, L. Hedberg, G. Mingione)
Moving-centre monotonicity formulas (Jonathan Zhu, J. Funct. Anal., 2018)

Recently in " Moving monotonicity formulae for minimal submanifolds in constant
curvature”, by K. Naff, J.J. Zhu, link

Moment indeterminateness: the Marcel Riesz variational principle, by David P.

Kimsey, Mihai Putinar, arXiv:2307.16018 (2023) is a nice source for history,
motivations and ideas
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https://people.kth.se/~gbjorn/hexp.pdf
https://arxiv.org/abs/1704.08195
https://arxiv.org/abs/2210.03263

Two classical inequalities

The Cauchy-Bunyakovsky-Schwarz inequality: under some natural assumptions,

([ s@o@ ) < [ sar e [ ora
Proof follows from

0< / (@) — t- g(2))? d = / (@) dz—2t / f(@)g(@) da + ¢ / ¢ (@) de

and the fact that the discriminant is non-positive.

The Markov inequality: for any positive continuous random variable &

a-Pr(£>a) <E(¢)
Proof.

a- / fe(x)dx < | zfe(x)dx
[a,00)

T

R
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A couple of weird sharp inequalities

Theorem 1

For any measurable function 0 < p(z) < 1, z € R, with compact support % O there holds

sinh? (— p|— ) dm/ﬂapif)dm’ )
%(/R " )dm)2<tanh<2/Rp|(;c)dm> ./R|;y|p(x)dx. (2)

The inequalities are sharp and attained iff p(x) is a characteristic function of an interval
[a, b] with ab > 0.

Remark. For p = x[4,5 the above inequalities become equalities:

2

Vb Vva
51 Vi Vb L —
sinh (ilng) S VRS 5 Vo = Z(b—a). baba,
1 2 1.b, b-d® 2-1 p*-a?
i(b—a) :tanh(ilna)- 5 = ’%Jrl' 2
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Why the above inequalities are strange? They are ‘transcendental’.

Indeed, looking ahead, | can tell you that if one consider the moments of positive
degrees, then the corresponding (Markov type) inequalities are algebraic (in fact,

polynomial). For example
(/D“ o dx>4 = (/w o) dI) (/m 2*p(x) dx) a (/R zp(x) dw) 2} ;

The inequality is sharp and again, attains for the characteristic function of an interval:

3 4

(b—a)t <12 [(bfa) poa @ _“2)2}

(1)37%)2 [4((12 + ab+b*) — 3(a® + 2ab + bz)]
=(b- a)4

=12.
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Riesz potentials for bounded measures

Let p: R™ — [0, 1] be an meausarable (nonnegative bounded) function with compact

support. Let us consider the Riesz potential of index «

(Zap)(x) =/ Adwy= i/R L‘Y)dy, x ¢ supp(p)

R™ |y - X|n—a Wn n |y — Xln—a

where the integrals are normalized by
1 1
dyy ;= —dy = —dy1 - ... dyn,
wn, wn,

wy, being the n-dimensional Lebesgue measure of the unit ball in R™. Then

(VZap)(x) :/ (v =x)p(y) doy.

o Ty =

n—o

If ex € R" is the normalized (—VZ,p)(x) then

n — n |y — x|n+2*0¢ |Z|’n+27o¢

:/ —EL_5(z)dwz,  suppp C R™\ {0}
R

" |Z|n—(072) ’

1a|(VIap)(x)|:/ wdwy:/nwdwz
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So, | will be interested in certain sharp point-wise estimates involving

1

n—«o

21

(VZp)6l = | et - ite) da

(Zap)(x) = / 22) 4,

n |Z‘n70¢
0(z
Tamsp)o) = [ A

In other words, if you have a ‘moment-like’ inequality for the L.H.S., it implies the
inequality for the gradient VZ,.
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Gradient estimates

Notice that a simple estimate implies

21 ~
/Rn [z P(2) doz
and, similarly, the Cauchy inequality with z; < 1-|z| implies that

1 =
7|VIQP‘ S Iu/) ° I()*Zp- (4)
n—«o

But these inequalities are far from being optimal. Indeed, the above estimate (1) gives:

sinh? (% /R+ @m) < %/w (@) dz /R+ "if) dz,

which can be rewritten for n = a = 1 (notice that wi = p1([—1,1]) = 2) as

/ xp(f)da:w < sinh™* (\// L:g)dﬂl’w/ p(f)dm’w> =sinh ™' /Zip - Z_1p.
R+ xr R+ xT R+ xT

1

— |(VIap)()| =

1 ~ -
< [ e ) e =T
(3)
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Similarly, interpreting

5 ([ P(:r:)da;> <tant (5 [ H80)- [ Jalp(o)as

for n =1 and a = 2, we obtain

implying an exact estimate

‘ |VZap|? < tanh Zop - Igp‘

This suggests a different shape of the corresponding inequality, we discuss this below. )
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Gradient estimates for general dimensions

Given a measurable function 0 < p(z) < 1, z € R", and 0 & supp p, find a sharp
inequality which involves

1
u:=Zap, v:i=Ta—2p, and w:= ——|VZap|.
n—ao
In other words, we want to determine
Na(u,v) := sup {w2  Tap=u, Lo_op= v} .
P

In this notation,

1 /
mlvzap| < JVa(IalLIa—Qp)-

A pair (u,v) C ]RQZO is said to be admissible if 3p: 0 < p < 1:it Zop = uw and Zo—2p = v.

Some natural questions arise:
o How does the shape of the goal function .44 (u,v) depend on w and v?
o Does 44 (u,v) separate into functions of uw and v for a general a?

o When it is symmetric in u and v?
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o V. Tkachev, Sharp pointwise gradient estimates for Riesz potentials with a bounded

density, Anal. Math. Physics, 8(2018)

Theorem 2

Let n > 1 and « € (0,2]. Then the set of admissible pairs coincides with the
nonnegative quadrant RQZO and

2
Na(u,v) = uz(a_l)/“ho‘i(t), Yu,v > 0
)

where t = t(u,v) is uniquely determined by the relation

« N0 faa(t) = w0,

where

o

falt) = 27" — 1)V2F(25%, 2ta, nd2 11 _ 42

2 00 29 2

. n42 2
&,%7n2 71_t )a

>
Q
—~
~
~
Il
~+
-
|
3
—~
~
)
I
—_
~—
3
~
%)
T
—~
V)

= ‘

and F([a,b],[c],t) is the Gauss hypergeometric function.

(5)

(6)
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The shape structure of the goal function 44 (u,v) is still hidden, but one has

No(u,v) = uQm*1)/“@,,,_&(1127(%“).
Two particular cases are interesting for applications and can be simplified to

for o = 2: Na(u,v) = u- pp(v),

for a = 1: M (u,v) = n(u-v).
The case o = 2 was the starting point for the above results. Let M, (t) be the solution
of MU (t) =1 — MY™(t), M(0) = 0. For example, M, (t) = tanht, Ma(t) =1 — e *.
Theorem 3 (o =1, V.T., 2005)

For any density function 0 < p(z) <1, 0 & supp p

(/Rn x|15|(jc) dwx>2 <M, (/Rn TJET") dwx> /Rn ‘g(:l do. (7)

The inequality is sharp and the equality holds when p(x) is the characteristic function of
ball B with a center on the x1-axes and 0 ¢ B.
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Theorem 4 (o« =2, V.T., 2018)

For any measurable function 0 < p(z) < 1, 0 & supp p, the sharp inequality holds

[ arl<o ([ BT [ 0. o

where ®,,(s) is the unique solution of the initial problem

(I)l ((I’l2 _ 1)
o) = — ,(0) =0, ©,(0) =1 9
L= e TO=0 .0 (9)
subject to the asymptotic condition
T(2t2
lim 20(8) _ (1 ) (10)
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Thecasea=1and n =2

The case n = 2 is even very special among o = 2. Both ®5(s)
and its inverse satisfy the same ODE

05(¢5 — 1)

¢//:
2T B, +s

D(0) = 0, D4(0) =1

Furthermore, the function ®3 has some extra symmetries and a
nice parameterizations by virtue of complete elliptic integrals:

[s(), ®(R)] = [ (B (k) ~ K (k) %(k K(b) - - E(0))

! dt 1T—(1—k2)t
K(k) = , / =
o VI—-t2/1—(1-k2)t2 V1I—¢2

The following remarkable properties: the Taylor expansion at the origin of ®3(z2) is

21 _6 3 7 7 8 11 9
(I)z(z)—szz + 4z 7,Jz +,“z — 5162 + 52 +amz + oz

and ®(z) satisfies the following involutive property:

\ (—®3) 0 (—®s) = id. \

We don't yet know any conceptional explanation of these facts.
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The classical L-problem of moments

A truncated moment problem with bounds appears in A. A. Markov (1896) research on probability theory.
Krein and Akhieser (in 1930's) considered the following problem: given a measurable function 0 < p(z) < L
on R define its moments

ln :=/x"p(ac) dzx.
R

How much it could be said about p if only finitely many moments are known? Which p are finitely
determined?. .. The truncated moment problem can be formulated in R™.

Some applications/motivations

@ Probability (reconstruction of probability density functions)
Physics (determination of contours)
Subnormal operator theory
Computer Science (image recognition and reconstruction)
Geography (location of proposed distribution centers)
Environmental Science (oil spills, via quadrature domains)
Engineering (tomography)

Optimization (finding the global minimum of a real polynomial in several real variables)

© © 6 6 06 06 0 ©

Function Theory (a dilation-type structure theorem in Fejér-Riesz factorization theory)
@ Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at different angles, collecting the information
on a screen. One then seeks to obtain a constructive, optimal way to approximate the body, or in some cases
to reconstruct the body.
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The classical L-problem of moments

The exponential transform of p(x) is the formal series identity:

1 & n L[ p(Q)dg
exp (—znglén_lt >=exp <_ZA t7§>

g0 [on]
:1+T+t—2+... = E(p(z),t)
Example. If p(z) = X[q,p)(x) then £, _1 = bn;an , n > 1, therefore
oo
t7
E Zn_lt_n =1In a
=1 t—2b
t—b b—a < b"
E(X[a A)=——=1 S —
(X1a,b) (), 1) pP— + ; m

n=0

In general, for union of several intervals, E(xp (x),t) =[] % is a rational
. . . 7
function, in particular, the Hankel determinant sequence

Aj = det(oitj)o<i, <N

vanishes after some integer N. For example, for one interval,

Ay =S, Ay =

S Sb
Sb Sb?

Naum Il'ich Akhiezer (1901-1980)

Adolf Abramovich Nudelman (1931-2011)
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Theorem (Krein, Akhieser, Nudelman)

@ The L-problem has a solution if and only if the sequence (o, ) is nonnegative definite on R (i.e.
(0itj)o<i,j<nN is nonnegative definite).

@ A class of extremal solutions of the L-problem (in the natural convex set of solutions) corresponds to
degenerated non-negative definite sequences (o, ), i.e. AN: det(oi1;)o<i,j<n = 0.

O Any extremal solution is (proportional to) the characteristic function of a union of at most N disjoint
bounded intervals: p = L - XuA; -

If L =1and I = [0,00), the solvability of the corersponding L-moment problem is equivalent to that of the
Stieltjes problem for {o } x>0, which is equivalent to the nonnegativity of the Hankel criterium

AN det(o’i+j);y;’j:0 >0, AII = det(o’i+j+1):fi7~:0 >0, m>0.

™

Example. For the exponential transform this readily yields (Markov's inequalities for L-moments)
23 < 12(Lofsy — £3),  etc (higher terms inequalities) (11)
Comparing the above example when p = X[q,5)(2) and £, _1 = (b"™ — a™)/n, this becomes

4 b3 — a® (b2 - 112)2 - 4
(b-a <12(0-a) = - T — o0
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The general exponential transform in R"

The exponential transform can be viewed as a potential depending on a domain in R", or
more generally on a measure having a density function p(z) (with compact support) in
the range 0 < p < 1. More precisely,

Ey(x) = oxp {_ 2 /p(@dc}’

nwn J - fe ="

If p(z) = xp(x) (the most interesting and, in a sense, an extremal case) then

En(z) = exp [_ 2 dc } .

nwn Jp e ="
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The 2D exponential transform and quadrature domains

The 2D-version has appeared in the 1970s in operator theory, as a principal function of
certain close to normal operators and has been intensively studied by many researchers

@ J.D. Pincus, Commutators and systems of singular integral equations, Acta Math., 121 (1968).

@ J.W. Helton, R.E. Howe, Traces of commutators of integral operators, Acta Math., 135 (3-4) (1975)

More precisely, for any measurable function
p:C—10,1]

of compact support there exists a unique irreducible, linear bounded operator T' acting on
a Hilbert space H, with rank-one self-commutator [T, 7] = £ ® £, which factors F, as

= ex L[ p(QdAQ — 1 (T — @) *_ ozl
Bz =exp |1 [ LLLO ] 1oy - -0 (2

The 2D-exponential transform has also recently been proved to be useful within operator
theory, moment problems and other problems of domain identification, and for
proving regularity of free boundaries (Gustafsson, Putinar, Milanfar, Shahgholian,. . .).
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The 2D exponential transform and quadrature domains

If one would infer from the 1D-picture a good class of extremal domains for Markov's L-problem in 2D, one
would choose the disjoint unions of disks, as immediate analogs of disjoint unions of intervals. In reality, the
nature of the complex plane is more complicated.

Example 1: the unit disk © = D(0, 1):

Ep=1--L

zw "

Example 2: Q@ = D(—1,1) UD(1,1):

- _ 1 1
+ Eo=(1- ) - c0he=1)-

Example 3: Q = ]D)(fl, r) @ D(1,r), » > 1 (a quadrature domain, see below):
/ ~_ \

\/\/

4 1+A(m)zw
Eq = (@2—1)(z2-1)"
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The 2D exponential transform and quadrature domains

@ D. Aharonov, H. S. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Anal.
Math., 30 (1976)

@ B. Gustafsson, Quadrature identities and the Schottky double, Acta Appl. Math.1 (1983)
@ M. Putinar, Linear analysis of quadrature domains, Ark. Mat. 33 (1995).

Q := a quadrature domain (for analytic functions) if

//hdxdy—ch z) VYhe L'(Q), for fixed z; € Q,¢; € C.
Sl

The exponential transform of a bounded closed set €2 is defined by

d¢ A d  _ Oman
Ba(z,w) = exp // _i ch) =1- > arigerr

m,n=0

It connects the exponential and the complex moments /., = [[, ("("dA(2).

) =)
Om,n o m+1 —n+1
E W =1- eXp(— E Zm’nz w ),
m,n=0 m,n=0

24/38



The 2D exponential transform and quadrature domains

Theorem. (Aharonov-Shapiro 1976; Gustafsson 1983, Putinar 1996) |

The following conditions are equivalent:

Q(z,w)

O Eq(z,w) is rational = Rl

21, lwl > 1;
O Q is a quadrature domain;
Q is determined by finitely many moments £;;, < det(ajk)év = 0 for some N;

There is a bounded linear operator T acting on a Hilbert space, with spectrum equal to 2, with rank
one self commutator [T, T = (£ ® &) and such that the linear span (T*kf)kzo is finite dimensional.

Theorem (B. Gustafsson, 1983)

A domain Q is a quadrature domain if and only if its Schwarz function is meromorphic on the Schottky double
of €. A boundary is always algebraic.

Theorem (M. Putinar, 1996)

There is a bounded linear operator T acting on a Hilbert space, with spectrum equal to €2, with rank one self
commutator [T, T] = £ ® £ and such that the linear span (T*kf)kzo is finite dimensional. In particular,
Eq(z,w) is rational.
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Given meromorphic functions f, g on a compact Riemann surface M, their meromorphic resultant is

m

B g(f71(0)) g(ai)
Ru(f.0) = R(%0) = sy = T s

where (f) = >_a; — >_ o; is the principal divisor of f. By Weil's reciprocity law, R(f, g) = R(g, f)-

Exawple.
{(1\ =@z-vE=2
-3
@= £

el =afl- a1
- RE.a) _30ge) e
96> a@aC>  ©
n
3 —\« P = ‘(;\\(E%LL) On the otles de}
o o) =&Y =E=N
Rgh= 5O 1o

Pl=no -Sa;= divisopl

Then the exponential transform of a quadrature domain §2 is the meromorphic resultant on the Schottky
double 2

Eq(z,w) = Ra(f — 2,9 — w).
@ B. Gustafsson, V.Tkachev, The Resultant on Compact Riemann Surfaces, Comm. Math. Phys., 2009
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Some very recent application

Arctic curves of periodic dimer models and generalized discriminants by Mateusz Piorkowski,

arXiv:2410.17138, Submitted on 22 Oct 2024

Abstract: We compute the algebraic equation for arctic curves of
the Aztec diamond with a doubly (quasi-)periodic weight struc-
ture and obtain similar results for certain models of the hexagon
[...] The key to our result is the construction of a discriminant
for meromorphic differentials on a higher genus Riemann surface.
This construction works analogously for meromorphic sections of
arbitrary holomorphic line bundles. . .

Dear Bjorn, dear Vladimir,

| have recently uploaded a paper on the arxiv which might be of
interest to you. It deals mainly with the construction of discrimi-
nants on Riemann surfaces, but | also discuss resultants in Section
6. The main motivation to study these objects comes from statis-
tical physics, more precisely dimer (tiling) models and the arctic
curves phenomenon. [...] There might be some connection to
your paper " The resultant on compact Riemann surfaces” though
the actual definition and construction that | use differs substain-
tially. Nonetheless, | thought you might be interested. |[...]
Best/Mateusz,

2024/10/28

propertics of the inverse Kasteleyn matrix. A similar approach can be formulated
for models of the Aztec diamond and the hexagon using a bijection between tilings
and families of nonintersecting paths. Here, the Eynard-Mehta Theorem [21] gives
us the determinantal structure, see also [20, Sect. 4]. A comparison between the
nonintersecting paths method and the inverse Kasteleyn matrix method can be
found in [14, Sect. 4]

FiGurE 1. A random tiling of the Aztec diamond of size 4 (left)
ize 200 (right). Note the frozen regions in the corners and
of a disc-shaped rough region in the middle. In this
case the arctic curve becomes a circle as proven by Jockusch, Propp
and Shor [30] (generated using code kindly provided by Christophe
Charlier).

hown in the seminal work of Kenyon, Okounkov and Sheffield [36] universal
behavior for the height function fluctuations emerge under the assumption that the
weights have a doubly periodic structure. In particular, the local dimer statistics
converge to a translation invariant Gibbs ensemble of which there are three types
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o Gustafsson, B. and Putinar, M., The exponential transform: a renormalized Riesz
potential at critical exponent, Indiana Univ. Math. J. 52 (2003)

Gustafsson and Putinar considered the n-dimensional version

2 p({)duC 2 1
Ep(x) = exp [*E /}Rn m = eXP(*;IO(x))a doC = EdQ
and proved that although the Riesz potential produces a logarithmic singularity at x
when this variable tends from outside to a smooth portion of the boundary 9 supp p, the
exponential restores the smoothness in x, even up to real analyticity.

In the same paper, they proved that for n = 2, In(1 — Eq(z)) is a subharmonic function
for all = & Q2. The proof makes use some integral representations and Ahlfors-Beurling
capacity estimates. They also deduce an asymptotic decomposition for  C R":

219 1

1 — Eq(z) = |[Sn=1] . |z|» (‘I|n+1)

and conjectured that a much stronger statement should holds:
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Conjecture. In the above notation,

In(1 — E,), if n=2,
L 1-E,)" /" if n>3,

is subharmonic outside supp p for any density p Z 0.

The above conjecture essentially claims that the function
— 2 n— n
"™ (Top()) = (1 — exp(~~Top(x)) "~/
is subharmonic for n > 3, where
,(t)=1—e 2"

A refinement of (1 — E,)™~2/™ is an arbitrary function F(Zop)™~2/™ satisfying
0< F(t) <1foranyt>0. Then
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The subharmonicity

@ V. Tkachev, Subharmonicity of higher dimensional exponential transforms, Operator Theory: Advances
and App., (156)2005.

n—2 n—2 , _2 ’ —2, 2
AF(Zo) ™ = ——(F'(Zo)F(Zo)” " AZo + (F'(Zo) F(Zo) ™ )| VTo|")
.. (now choose F' such that F' =1 — Fz/")- .
9 13
=20 @) (nF(Io) ®ATy — 2F(Zo) " |VIo| ) )

—2(n - 21 - F(@) D) [Pz - |47,
where
[
5= [t G d

Io:/Wdcw

Therefore the sign of the Laplacian AF(z) coincides with the sign of F/(Zy)B — |A|2.
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The subharmonicity

Theorem (V.T., 2005) If 0 < p(z) < 1 with compact support, 0 & supp p, € R",
M (t) =1 — M3/™ then
Mn(Zo)B — |A* > 0.

One of the key elements in the proof was the following relation

s R
n = T 1
M (/Bm) |x—<|n> R (14)

in other words, M, transfers the & = 0 index Riesz potential of any ball to its kernel
(up to a normalization).
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1
n—2

O Remark 1. The subharmonicity of (1— Ep)(”’z)/" is weaker than that of My, (E,), and it readily follows from

eZw/n 1

Mu(w) € g
n2

Q@ Remark 2. Using the inversion x — z/|z|2, the desired inequality follows from a particular one:

2
(/%”d) gMn< o dwz) L e (15)

@ Remark 3. Using an elementary inequality

*;*:|, a,b,c,d >0,
c

it suffices to verify that (15) oven holds when 0 < p(z) < 1 with compact support in the half-space: supp p C ]Rﬂ'r’.

Proposition. Let 0 < p(x) < 1 have a compact support supp p C ]Ri and M;(t) =1i= f/". Then
2
z1p(x)
No(u,v) :=sup Tlzln dzy, | :p € K(u,v) p = uMy (v)
x
where
x x
K(u,v) = {p: 0 < p(z) <1, suppp C KT, /dew R = S

|z|n—2 BR
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Riesz potentials for a ball: a trick with co-area formula

Let us consider a ball

= (y2,---sYn)
B(r,0) ={y €R™: [y —7e1|? < 7% — 0%} K

radius /72 — o2
={y €R" : [y> — 2ry1 + 0 < 0}
o
={yeR": - <A(y) <1}
T

; _ w2402 ;
where the function A(y) = 2ru1 foliates B(T, o) into spheres

9B(1z,0): {y €R™ : \y|2 — 272Y1 +o% = 0} ={y €R™: |y — Tzey 2 =722 0'2}

with moving centres at (7z,0) for £ < z < 1. By the co-area formula
d 1 1 das
-/ o[ —_—, (16)
JB(r,0) lyI™  wn Jo/T 9B(rz,0) |y|™VA(Y)]
where
=12 2 2 12,2 2,2 2
2 _ 3l (y1 —o” —171") V7222 —02 1
VA" = + — " = |V = - — ..
[VA| 722 PR IVMoEg(rz,0) - "
Substitution into (16) yields by the harmonicity of y1 |y| ~™ and the mean value property
1 n—1
/‘ oy as / Tdz ( Tz nwn (V7222 — 02) )
7222 — o2 n 7T 2,2 _ 52 n )
oye VT2 dB(_’_z o wn |yl oir VT2z o2 (7z) wn
3
(substitution 7z = o cosht) = n/ tanh™ 1 tdt =: Thn(§), where cosh ¢ = 7/0.
0
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An equivalent way to rewrite the latter result is

dw¢ R\"
. = _)=(=), (a7)
B(R) |z — (| ||
in other words, M, transfers the Riesz potential of index 0 to its kernel (up to a normalization).
Note that if g(t) = (tanht)™ then T}, (t) = n(tanh )1, g¢’(t) = n(tanh )™~ (1 — tanh? t), hence
ddTgn =1 — g2/™ which readily implies
g(t) = (tanh )" = My, (Ty (1). (18)
In summary, using cosh & = 7 /0 and 72 — 62 = o2 sinh? &, we obtain using the Mean Value Property:
1
A — dzey = T () = v, (19)
B(r,0) |z|™
1 o sinh™¢ 2 n 2 2
——— dzy, = (MVP) = 6°———— = 7% (tanh = 7" My (T, =7"My(w) =u, 20
/B(m) s e = (VP = o R = 2 (ranh ) (T (€) n (v) (20)
T sinh™ &
—dxy, = (MVP) =0 ——— = ... = T My (T =7 My (v) = \JuMp(v). 21
ooy Tai s = (VP) = 0 0 n(Ta(©) = 7Mn (0) = uMn () (2)

Note that the right hand side in (19) etc is increasing in £ for any fixed o, hence it takes any positive real value. By the above,

p(x) := XB(r,0)(®) € K(u,v), therefore
A2 (u, v) 2 uMp (v).
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‘Bathtub principle’

Let f be p-measurable, u({z : f(z) =t}) = 0and pu({z : f(x) < t}) be finite for
all real t. A solution of the minimization problem

s-level set

<—\\

inf{/fpdp, :p € QA)},

where Q(A) :={p: 0 < p <1, [pdu = A} is given by the characteristic function
of a sublevel set pg = X (<} where s = sup{t: p({z: f(=) <t}) < A}

O Remark 1. An equivalent statement: in the above assumption,

du = d impli du < du.
/{t:m)@} w= [ o) du imples /{t:m@} @ dn < [ f@pe) d

O Remark 2. Compare this with Markov-Chebyshev inequality a - Pr(¢ > a) < E(&)

O Remark 3. When p({z : f(xz)>t}) is finite for all real ¢, the corresponding statement holds for sup.

Proof. Note that

f-0=p), if f>a, <{a-(0—p), it f>a, — o G =

f'(x{f<“}7p):{ F-1-p), if f<a. a-(d—p)y if f<a

therefore

/f‘(X{f<a} —P)dﬂﬁ/ﬂ‘(X{f<a}—P)=0
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Proof cont.: Conversely, given two arbitrary positive u, v, let 7, o be chosen as in (19)-(21), and let p(x) := X p(+ o) ().
Consider a = |22~ ", b = |z| ™™, ¢ = 1 |x| ™. Define a measure on R™ by

dx
dp = (a + 0'2b) dz,, = (\z\z + 02)7&'

@™

Then for any test function p € K (u, v)
~ _ [ _ [/.2=n 2, —n _ 2
/pdu—/pdu—/ du—/(|zc\ + o x| " )day =u+ o v (22)
B(r,0)
This means that p and p are also test functions for the extremal problem
sup{/ fpdu : /pdu =u+ o},
P

Then (a magic point!):

where f(z) = a+((:7'2b = |CE\§-1F<72 = 2_,_)}(‘”).
O {f(z) > =1} ={A(=) <1} = B(r,0),
O L({f(@) > = )) = u(B(r,0)) = (by (22)) = u + %0

By the Bathtub Principle, p is an extremal density, hence

[toan< [rpan= /Bwa) fdu = /B(m) wrla] ™" dp = (by (21) = y/uMin (v)

therefore A5 (u, v) < uMy (v). O
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1 Introduction
Given a measurable function f (x) on ", its Riesz potential of order 0 < & < n s
defined' by

[ e

e |y = xI"

where dax denotes the n-dimensional Lebesgue measure on R normalized by
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